The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity.

نویسندگان

  • Prashant Singh
  • Yi-Chun Kuo
  • Swati Mishra
  • Chia-Hong Tsai
  • Chih-Cheng Chien
  • Ching-Wei Chen
  • Marie Desclos-Theveniau
  • Po-Wei Chu
  • Birgit Schulze
  • Delphine Chinchilla
  • Thomas Boller
  • Laurent Zimmerli
چکیده

Plant cells can be sensitized toward a subsequent pathogen attack by avirulent pathogens or by chemicals such as β-aminobutyric acid (BABA). This process is called priming. Using a reverse genetic approach in Arabidopsis thaliana, we demonstrate that the BABA-responsive L-type lectin receptor kinase-VI.2 (LecRK-VI.2) contributes to disease resistance against the hemibiotrophic Pseudomonas syringae and the necrotrophic Pectobacterium carotovorum bacteria. Accordingly, LecRK-VI.2 mRNA levels increased after bacterial inoculation or treatments with microbe-associated molecular patterns (MAMPs). We also show that LecRK-VI.2 is required for full activation of pattern-triggered immunity (PTI); notably, lecrk-VI.2-1 mutants show reduced upregulation of PTI marker genes, impaired callose deposition, and defective stomatal closure. Overexpression studies combined with genome-wide microarray analyses indicate that LecRK-VI.2 positively regulates the PTI response. LecRK-VI.2 is demonstrated to act upstream of mitogen-activated protein kinase signaling, but independently of reactive oxygen production and Botrytis-induced kinase1 phosphorylation. In addition, complex formation between the MAMP receptor flagellin sensing2 and its signaling partner brassinosteroid insensitive1-associated kinase1 is observed in flg22-treated lecrk-VI.2-1 mutants. LecRK-VI.2 is also required for full BABA-induced resistance and priming of PTI. Our work identifies LecRK-VI.2 as a novel mediator of the Arabidopsis PTI response and provides insight into molecular mechanisms governing priming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis malectin-like leucine-rich repeat receptor-like kinase IOS1 associates with the pattern recognition receptors FLS2 and EFR and is critical for priming of pattern-triggered immunity.

Plasma membrane-localized pattern recognition receptors such as FLAGELLIN SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize microbe-associated molecular patterns (MAMPs) to activate the first layer of plant immunity termed pattern-triggered immunity (PTI). A reverse genetics approach with genes responsive to the priming agent β-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY...

متن کامل

Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

Upon recognition of microbe-associated molecular patterns (MAMPs) such as the bacterial flagellin (or the derived peptide flg22) by pattern-recognition receptors (PRRs) such as the FLAGELLIN SENSING2 (FLS2), plants activate the pattern-triggered immunity (PTI) response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2) is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich recepto...

متن کامل

CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming

In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reac...

متن کامل

Pathogen-associated molecular pattern-triggered immunity and resistance to the root pathogen Phytophthora parasitica in Arabidopsis

The cellulose binding elicitor lectin (CBEL) of the genus Phytophthora induces necrosis and immune responses in several plant species, including Arabidopsis thaliana. However, the role of CBEL-induced responses in the outcome of the interaction is still unclear. This study shows that some of CBEL-induced defence responses, but not necrosis, required the receptor-like kinase BAK1, a general regu...

متن کامل

The Arabidopsis Cysteine-Rich Receptor-Like Kinase CRK36 Regulates Immunity through Interaction with the Cytoplasmic Kinase BIK1

Receptor-like kinases are important signaling components that regulate a variety of cellular processes. In this study, an Arabidopsis cDNA microarray analysis led to the identification of the cysteine-rich receptor-like kinase CRK36 responsive to the necrotrophic fungal pathogen, Alternaria brassicicola. To determine the function of CRK36 in plant immunity, T-DNA-insertion knockdown (crk36) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2012